
Writing efficient PHP

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Writing efficient code .. 4
3. Tweaking PHP code ... 12
4. Optimizing database queries ... 17
5. Other performance enhancements.................................. 21
6. Summary .. 24

Writing efficient PHP Page 1 of 25

Section 1. About this tutorial

Should I take this tutorial?

This tutorial targets the PHP developer who already understands PHP, but wants to
write more efficient PHP code or to improve the performance of existing PHP
applications. It is not intended as an introduction to PHP -- plenty of other resources
are available for that. Rather, it assumes that you already have an installation of PHP
available and are familiar with the basic PHP syntax.

In this tutorial, you will learn ways to improve the performance of your PHP code. The
tutorial is in four main parts:

• General coding considerations that can be often applied to any language, but are
illustrated with specific PHP examples (see Writing efficient code on page 4).

• Nuances of the PHP language and how you can use them to further improve the
efficiency of your PHP code (see Tweaking PHP code on page 12).

• Improving the performance of your SQL queries since, for larger applications, PHP
often is used in conjunction with a database (see Optimizing database queries on
page 17).

• Making your PHP code run faster and references for further reading (see Other
performance enhancements on page 21).

Background and motivation

For a recent consulting engagement, I reviewed a Web application nearing completion.
The application was written in PHP, and had some serious performance problems.
After a brief look at the code, I decided to search the Internet for any articles or
information on tuning the performance of PHP code. To my surprise, I found very little
information available. The PHP manual (see Resources on page 24) suggested simply
throwing in more hardware. In my client's case, this was not always an option. Many
systems were already in the field, and this application was a product upgrade. It was
not feasible to upgrade every system in the field for this relatively minor product
upgrade.

I had to devise my own tests to find ways of improving PHP. Thanks to IBM's
developerWorks, I can share these findings with a much broader audience.

Tools

You can read through this tutorial from beginning to end and pick up a wide variety of
tips and advice on how to improve your PHP code without having anything in particular

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 25 Writing efficient PHP

installed.

For the most value, you may want to construct and run some of your own test cases.
To do this, you will need a working installation of PHP on your machine. You should
probably have the following:

• Any OS supported by PHP (http://www.php.net/manual/en/installation.php).

• PHP (http://www.php.net/)

• A Web server under which you run PHP is optional. Alternatively, you can run PHP
from the command line.

Getting help

For technical questions about PHP, visit the php.net Web site. Read the PHP manual
and pay particular attention to the user-contributed notes at the bottom of each manual
page. They often contain valuable lessons learned that may help answer your question.

Refer to Resources on page 24 at the end of this tutorial for these and other useful links.

About the author

Steven Gould is a principal consultant with a large, international IT consulting and
professional services company. Based in Dallas, he is a systems architect and senior
developer, focusing primarily on Java and C++ development under Windows, Linux,
and various UNIX platforms. Having worked on a variety of Internet and intranet
applications, he also is very well versed in many other Internet-related technologies.

Tip: You also might be interested in the PHP Quick Reference Card available for free
from the author's Web site.

Acknowledgements

I'd like to thank Shari L. Jones for her help reviewing this tutorial, and her unrelentless
patience with me during the writing of it.

Additionally, I'd like to thank Akmal Chaudhri (editor) and IBM developerWorks for
giving me the opportunity to write this much needed tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 3 of 25

http://www.php.net/manual/en/installation.php
http://www.php.net/manual/en/installation.php
http://www.php.net/manual/en/installation.php
http://www.php.net/manual/en/installation.php
http://www.php.net/
http://www.php.net/
http://www.php.net
http://www.php.net/manual/en/
http://www.php.net/manual/en/
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/

Section 2. Writing efficient code

Coding for efficiency

In this section, I review a variety of things that contribute to writing efficient code,
whether in PHP or another language. Note that some of the following suggestions may,
in the minds of some people, reduce the readability of the code. However, the payoff is
in terms of improved performance.

You, as the developer, determine the points in an application where performance or
readability and maintainability are the primary concerns. For example, if a piece of
code is executed once per instance of an application, then readability is probably most
important. However, for a piece of code that may be executed thousands, even millions
of times per application instance, then performance is probably of greater importance
than readability. Even this depends on a number of external factors -- such as the time
available to execute that piece of the application, the amount of work to be done during
each iteration, and the users' perceived performance of that part of the application.

If you do apply any of these techniques for improved performance, and you think it
negatively impacts the readability of the code, add extra comments to the code and
explain what is happening.

Optimizing loops

Looping, in various guises, is a fundamental concept in any programming language. It
is very powerful, but can also cause performance problems in your programs.

Be careful which code you put inside a loop, especially if you expect the loop to be
iterated through a large number (say, thousands) of times. In the next few panels, I
look at several areas that require special attention when you use looping, whether the
loops are for, foreach, while-do, do-while or any other form of loop. Broadly
speaking, I consider each of the following:

• Eliminating redundant function calls within loops.

• Inlining function calls within loops.

• Creating and destroying objects within loops.

Even though the focus is on the preceding types of optimizations within loops, the
gains from any of the performance improvement techniques discussed in this tutorial
will be multiplied by any large loops that are impacted.

Tip: You probably have tens, even hundreds of loops in your application. To identify
which ones to focus your efforts on, insert some simple debug that outputs an
identifying line each iteration. That way you can tell, for a variety of different sets of
input data, just how many times each loop is executed. You might be surprised at the
results!

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 25 Writing efficient PHP

Optimizing loops: eliminate redundant function calls

Function calls can be very expensive in terms of CPU usage. Try to reduce the use of
them inside loops. The two primary ways to do this are:

• Eliminate repeated calls to the same function with the same parameters

• Inline small, simple functions

I'll look at inlining separately in Optimizing loops: inline function calls on page 6 .

At first you may think, "Why would anyone repeatedly call the same function with the
same parameters?" It's a reasonable question, but consider the following very common
type of loop construct:

for ($i=0; $i<count($myArray); ++$i)
// do something

Although it appears innocent enough, that call to count($myArray) is made once
every iteration. In any such loop, provided it doesn't add or remove elements from
$myArray, the size of the array and hence the value returned by count($myArray)
remains constant. You can write it more efficiently as follows:

$arraySize = count($myArray);
for ($i=0; $i<$arraySize; ++$i)

// do something

Notice how the call to count($myArray) is made just once now rather than once per
iteration in the initial code example. This second approach does create another,
temporary variable, but it gives better overall performance.

Optimizing loops: eliminate redundant function calls
(continued)

In addition to the previous common trap (see Optimizing loops: eliminate redundant
function calls on page 5 , also watch for code similar to the following:

$myConstString = "This is some constant text";
for ($i=0; $i<$arraySize; ++$i)

{
print trim(strtolower($myConstString));
// do something
}

Provided the above loop does not modify $myConstString, then the call to
trim(strtolower($myConstString)) will always return the same value (in this

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 5 of 25

instance, a string). You can move this function call to just before the loop, and store the
return value in a temporary variable.

One other thing to notice with this last example is that ordering of function calls can
impact performance. For example, trimming white space off of a string then converting
the result to lowercase is marginally more efficient than converting the same string to
lowercase, then trimming off any white space. This is because trim may shorten the
string, therefore resulting in less work for the strtolower function. Either way, the
result should be the same in both cases. However, trimming first potentially results in
less computational effort.

Watch for similar optimizations in your code.

Optimizing loops: inline function calls

Often functions are defined that contain just one or two lines of code in the body. In this
case, the overhead associated with calling and returning from the function may well be
large compared to the actual work done by the function. Ideally, the compiler would
detect this and replace the call to the function with the function body. Unfortunately, this
rarely happens.

Languages such as C and C++ have an inline keyword to assist the compiler with
this type of optimization. With PHP, however, it is necessary to perform this type of
optimization manually. For example, consider the following code fragment:

function average($a, $b)
{ return ($a + $b) / 2; }

...
for ($i=0; $i<$arraySize; ++$i)

$av[$i] = average($array1[$i], $array2[$i]);

A more efficient implementation, albeit a little less desirable from a design and re-use
perspective, moves the calculation out of the function average and into the caller. The
result is:

for ($i=0; $i<$arraySize; ++$i)
$av[$i] = ($array1[$i] + $array2[$i]) / 2;

This second implementation eliminates the overhead associated with invoking the
function average, and returning the result.

Only use this optimization for small functions and in places where the function could be
called thousands of times. If you use this optimization technique for larger functions
(where the overhead associated with invoking the function is dwarfed by the body of
the function), the gains are minimal at the cost of far less readable and maintainable
code.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 25 Writing efficient PHP

Optimizing loops: create or destroy objects

Although PHP is not a fully object-oriented language, it does support the concept of
objects. As with any language that supports object creation, a small overhead is
associated with creating a new instance of an object, as well as with destroying an
object. Therefore, create and destroy objects within a loop only when necessary.

Often, you can create an object outside of the loop. Then you can either treat it as
read-only within the loop or, if different object settings are required in each iteration,
modify its properties instead of destroying one object and creating a new one. For
example:

for ($i=0; $i<$arraySize; ++$i)
{
$pt = new Point($i, $myArray[$i]);
// do something with $pt
}

In this case, assume a Point object has two properties of interest: x and y. In each
iteration of the loop, a new Point object is created (with the new keyword) and
destroyed. As an alternative, you can create one instance before the loop and then
modify its properties in each iteration. This removes the overhead of destroying the old
instance and creating a new one. The code would be as follows:

$pt = new Point();
for ($i=0; $i<$arraySize; ++$i)

{
$pt->x = $i;
$pt->y = $myArray[$i];

// do something with $pt
}

Note that because in PHP all of an object's member variables are public, this type of
optimization should usually be possible. It may not always be desirable from a pure
object-oriented design perspective, but that tradeoff is up to you as the developer.

Eliminating empty functions

Occasionally programmers new to object-oriented development and PHP may define
subclasses that contain empty function definitions. This is necessary only if you intend
to disable the behavior of a parent class -- generally as a result of a poor design in the
first place.

Eliminate any empty functions, such as functions that simply return, and their function
calls. The unnecessary overhead of calling a function that does nothing and then
returning from it is eliminated.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 7 of 25

Eliminating redundant code

When modifying existing code, be careful to remove any redundant code. For example,
when I worked on code that several previous developers had modified, I found
assignments to a variable that were always executed, but the resulting variable was
never used. The problem is compounded if the variable is initialized by a call to a
function, and the result is never used.

Avoiding comments that fail to add value

Some developers have a habit of adding a short comment consisting of just their
initials, or sometimes their initials and the date. These comments rarely add any value
to the code for anyone but the programmer who inserted them. Additionally, do not
consider such comments documentation.

If you need a comment to explain the code, add information that will be helpful to other
developers. If not, leave the comment out. It clutters up the code and potentially adds a
small overhead in any scripting language.

Reordering switch...case statements

When using a switch...case statement, try to place the most frequently-occurring cases
at the top of the list. This improves speed and efficiency for the most common cases.
For example:

switch ($user->writingHand)
{
case 'right-handed':

print 'User is right handed'
break;

case 'left-handed':
print 'User is left handed'
break;

default:
print 'Not sure whether the user is left or right handed!'

}

Handling special cases early

If your code includes any special cases where, for example, no action needs to occur in
a function or method, place them as early in the code as possible and order them from

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 25 Writing efficient PHP

most-likely-to-occur to least- likely-to-occur.

For example, in the function ConvertToUpperCase shown below, note that the test
for an empty string is coded first. Then error conditions, such as the end index being
less than 0 or the end index being less than the start index, are coded after that.

function ConvertToUpperCase($str, $start, $end)
{
if ($str == "")

return "";

if ($end < 0 || $end < $start)
return $str;

if ($start < 0)
$start = 0;

$len = strlen($str);
if ($end > $len)

$end = $len;

return substr($str,0,$start)
. strtoupper(substr($str,$start,$end+1-$start))
. substr($str,$end+1);

}

Using multi-dimension arrays with caution

Try to avoid excessive use of arrays, especially arrays of arrays, unless you really are
handling data with two or more dimensions. For example, avoid using
$array[0][...] to store one set of data such as the names of the months in a year,
and $array[1][...] to store another set of loosely related information, such as
sales data for each month. From a performance standpoint, it is more efficient to use
two arrays such as $array1[...] (storing the names of the months) and
$array2[...] (storing the sales data for each month).

Watching your network traffic

During one performance assessment, I noticed that a single user request to preview a
report, being generated by PHP using PDFLib, actually generated two sequential HTTP
GET requests. (The browser used was Microsoft Internet Explorer (IE) 5.5 SP1 -- the
preferred browser at that time -- running on Windows 2000.) The resulting PHP script
was actually running twice with the same inputs. I verified this by setting up a sniffer
between the client machine and the server that reported exactly what was being sent
back and forth between the two machines.

From the users' perspective, they would kick off the request to view a report. After
some period of time -- actually after the script had run once -- the browser window
would go blank. Then, after another equally long period of time -- after the script had

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 9 of 25

completed for the second time -- the browser window would display the requested
report. By eliminating one of these requests, I could cut the time that the user waits by
half - a 100 percent improvement in performance.

I found that the problem of two GET requests being made to view a single report was
specific to Internet Explorer. After researching the Microsoft Web site, I determined that
multiple GET requests are normal behavior for Internet Explorer when it handles
MIME-types such as PDF files. Based on information available from a Microsoft
Support WebCast, "MIME-Type Handling in Microsoft Internet Explorer ," you can avoid
two GET requests by ensuring that correct and complete headers describing the
content are returned. In particular, you should include the following header:

Content-Type: application/pdf
Content-Disposition: inline; filename=report.pdf

By examining network traffic, I observed that the Content-Disposition line was
omitted from the HTTP response header. After modifying the application to output this
extra header, Internet Explorer correctly issued a single HTTP GET request for each
report.

Carefully examine the network traffic, and differences between network traffic
generated when using Internet Explorer, Opera, or Netscape. You might achieve a 100
percent improvement in performance for the recommended browser.

Returning content when it's available

In the same performance assessment mentioned in Watching your network traffic on
page 9 , no data was sent back to the client browser until the entire PDF report had
been generated. This was also observed by watching network traffic. When using
PDFLib, you can generate PDF data directly in memory (instead of in a temporary file.
Then, you can send each page of the report to the client as it is generated. The
benefits of this method include:

• Network performance is better, especially for larger reports or over slower network
connections. The first page can be sent before the entire report has been generated.
As soon as the first page is ready, it is sent back to the client.

• Memory requirements on the server are reduced.

• The need for temporary files is avoided.

By making a few small changes to the application, you can implement this streaming of
the reports as they are generated.

Ideally, the first page of the report is displayed as soon as it is received by the client
browser. Limitations of the PDF format in use make this impossible. Adobe Acrobat
Reader does support a Web-optimized PDF format that is more suitable in this
instance. As of this assessment, PDFLib does not support output in this Web-optimized
format.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 25 Writing efficient PHP

http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp

Tip: Be careful not to send content back in blocks that are too small. You don't want to
generate a large amount of extra network traffic. In the application mentioned above,
sending back one PDF page at a time was a reasonable compromise between
frequency of data sent back to the client and size of the data returned.

Section summary

In this section, you examined a variety of ways to improve the performance of your
PHP applications. Although the suggestions used PHP code to illustrate how to
improve performance of the code, the concepts presented here are largely language
independent. You can apply many of the same concepts to improve the performance of
applications developed in other languages.

In Tweaking PHP code on page 12 , let's look at performance improvements that are
specific to the PHP language.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 11 of 25

Section 3. Tweaking PHP code

The finer points of efficient PHP coding

In Writing efficient code on page 4 , you looked at several ways to write efficient code
largely independent of the language you're using. Although illustrated with PHP
examples, many of the same techniques could be applied to other languages such as
C++ or Java.

In this section, I examine a variety of performance improvements that are more specific
to PHP or exploit PHP-specific functions and behavior.

Using pre-increment versus post-increment

In PHP, as in C, C++ and Java, you can increment an integer variable by using the
special unary operator: ++. For example:

$x = 0;
$x++; // Post-incrementation. x is now 1
++$x; // Pre-incrementation. x is now 2

Similarly, you can decrement a variable by using the unary operator: --.

According to the Zend Optimizer Technical FAQ, pre-incrementation is a faster
operation than post-incrementation. This is one of the simpler optimizations performed
by the Zend Optimizer (see Resources on page 24 for details).

Therefore, it is recommended that you use pre-incrementation rather than
post-incrementation whenever possible. The only place where this may make a
difference is if the incrementation is done as part of an expression evaluation. If it is a
stand-alone statement as shown in the preceding examples, you should have no
problem changing from post-incrementation to pre-incrementation.

Similarly, you should use pre-decrement instead of post-decrement whenever possible.

Quoting strings

The PHP language supports two ways of quoting strings -- with double quotes or single
quotes. Strings in are single quotes are not expanded but used as is. Often this is
sufficient. See "Using Strings," listed in Resources on page 24 , for more information on
the different uses of strings in PHP.

When using character strings don't need to be expanded, such as those without any

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 25 Writing efficient PHP

variable references or escaped characters, use single quotes instead of double quotes.
Because strings within single quotes are not parsed, they are executed more quickly
than strings inside double quotes that must be parsed first.

Note that this performance enhancement may seem unnatural to C, C++ or Java
developers who typically use double quotes for strings and single quotes to indicate a
character. Since I work mostly in C++ and Java, I still find myself using double quotes
for strings when writing PHP code. It's a hard habit to kick, but kicking it can buy you a
little better performance from your PHP applications.

Understanding the difference between print and printf

PHP developers with a background in C and C++ may frequently be tempted to use the
printf function to output strings. While this works fine, it does cost more in terms of
CPU usage than the similar, yet more basic print function. Strictly speaking print is
not a real function but a language construct.

Don't use printf when print is sufficient. To output simple strings, use print.
Generally, you should only use printf (and sprintf) when you need more control
over the output format, for example, when formatting integer or floating point numbers
for display.

Understanding the difference between require and
include

According to the PHP manual, require and include "are identical in every way
except how they handle failure." However, further reading of the manual suggests
another very subtle difference that impacts performance.

When you use the require keyword, the named file is read in, parsed, and compiled
when the file using the require keyword is compiled. When a file containing the
include keyword is compiled, the named file is not read in, parsed, and compiled
initially. Only when that line of code is executed is the file read, parsed and compiled.

Only use the require keyword if you know you will always need that named file in the
current script. If you might use its functions, use include instead. PHP opens up all
files that are required, but only opens included files as needed.

Additionally, you should also consider using require_once and include_once in
place of require and include respectively. In practice, it is more likely that you
actually want the functionality provided by the require_once and include_once
functions, even though it is much more common to use the require and include
keywords respectively.

Refer to the following PHP manual pages for more information: include, include_once,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 13 of 25

http://www.php.net/printf
http://www.php.net/printf
http://www.php.net/print
http://www.php.net/print
http://www.php.net/include
http://www.php.net/include
http://www.php.net/include
http://www.php.net/include_once

require, require_once.

Keeping source include files small

Since, PHP files are parsed and compiled at runtime, you should try to keep your
source file sizes as small as possible. Source file size is particularly important with files
that are included by other files. Only include or require files you absolutely must
have. Additionally, if you only need one function in a file, consider breaking that
function into its own file.

One thing of interest here is that after running tests on a variety of source files with
varying amounts of comments, I found that the amount of comments in a source file
had no significant impact on performance. The only thing that seemed to affect
performance was the amount of PHP code in the files. This seems reasonable when
you consider that comments basically are ignored by the compiler, while any code must
be parsed and compiled -- something that is much more time consuming.

Making effective use of built-in functions

PHP has a very rich set of built-in functions. In general, using an appropriate built-in
function is more efficient than trying to implement the same functionality in PHP
manually.

An example of this is the date function. I have seen several instances where a
developer has tried to output a date by first constructing an array with the getdate
function. Then, to generate the required output, the developer accesses the various
elements of the array.

In this instance, the developer could have used the date function to format date and
time strings with just one call to a built-in function. When you want to output date
strings, use the power of the date function instead of trying to code the logic manually.

Similarly, when implementing code to perform a fairly common task, take a few minutes
to review the PHP manual. You might find a built-in function that you can use instead.

Reducing looping with built-in functions

The built-in functions of PHP can dramatically improve the efficiency of your code in the
area of looping. When you encounter a block of PHP code that iteratively calls a built-in
function, take time to see if a more efficient way of achieving the same task is available
through a different, yet related, built-in function.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 25 Writing efficient PHP

http://www.php.net/require
http://www.php.net/require_once

For example, it's faster to prepare a large string with UIDs and call
imap_fetch_overview once than it is to call imap_fetch_overview repeatedly in
a loop. See the user-contributed comments for the imap_fetch_overview function in the
PHP manual for more details.

Similarly, when reading large files it is far more efficient to read, say, a line at a time
(using fgets) and process that, than it is to read and process a character at a time
(using fgetc). There are many other similar cases throughout the PHP language,
depending on exactly what your application does.

Use HTTP 1.0 with fsockopen

The PHP function fsockopen initiates a stream connection to another machine across
a network. When you use this to communicate with another machine, use the simpler
HTTP 1.0 protocol unless you specifically need some of the features provided by the
HTTP 1.1 protocol.

With HTTP 1.1, the default behavior is to keep connections alive until they are explicitly
closed or the connection times out. This behavior can create some serious
performance consequences if clients that don't expect, or utilize the behavior. (Note
that for clients designed with this behavior in mind, keeping connections alive actually
improves performance.) Unless your application requires that connections be kept
alive, then seriously consider using the HTTP 1.0 protocol with fsockopen, as in the
sample code below:

$fp = fsockopen($server, $port);
fputs($fp, "GET $page HTTP/1.0\r\nHost: $server\r\n\r\n");

When using the HTTP 1.1 protocol to make a request to another machine, you may
also encounter unexpected hex values interspersed amongst the returned data. These
unexpected hex values are the result of a chunked transfer-encoding which, according
to the HTTP 1.1 specifications must be supported by any HTTP 1.1 application.
Therefore, your application should either handle this type of encoding, or not claim to
be an HTTP 1.1 client.

So, in summary, claim to be an HTTP 1.0 client unless you specifically need features of
the HTTP 1.1 protocol. If you do need HTTP 1.1 features, then be sure to support the
newer protocol fully.

Avoid the "Top 21 PHP Programming Mistakes"

Finally, an interesting and useful three part series, "Top 21 PHP Programming
Mistakes," is available on the Zend.com Web site. While not all of the listed mistakes
directly impact performance, it is a good idea to familiarize yourself with them and try to
avoid them.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 15 of 25

http://www.php.net/manual/en/function.imap-fetch-overview.php

• Part 1: Seven Textbook Mistakes

• Part 2: Seven Serious Mistakes

• Part 3: Seven Deadly Mistakes

Section summary

You have just looked at improving the efficiency of your PHP applications by using
features of the PHP language to your advantage. Of these, you can probably get the
most significant improvement through careful selection of the most appropriate built-in
function for the task at hand. In fact, this idea alone constitutes nearly half of this
section. You can use the other techniques discussed to further tune your applications
for best performance.

In Optimizing database queries on page 17 , let's look at improving the performance of
your SQL code when used within your PHP applications.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 25 Writing efficient PHP

http://www.zend.com/zend/art/mistake.php
http://www.zend.com/zend/art/mistake.php
http://www.zend.com/zend/art/mistake.php
http://www.zend.com/zend/art/mistake.php
http://www.zend.com/zend/art/mistake.php
http://www.zend.com/zend/art/mistake1.php
http://www.zend.com/zend/art/mistake1.php
http://www.zend.com/zend/art/mistake1.php
http://www.zend.com/zend/art/mistake1.php
http://www.zend.com/zend/art/mistake1.php
http://www.zend.com/zend/art/mistake2.php
http://www.zend.com/zend/art/mistake2.php
http://www.zend.com/zend/art/mistake2.php
http://www.zend.com/zend/art/mistake2.php
http://www.zend.com/zend/art/mistake2.php

Section 4. Optimizing database queries

The importance of efficient SQL

Most Web applications of any size involve the use of a database. Typically, a Web
application allows the addition or creation of new records (for example, when a new
user registers on the site), and the reading and searching of many records in a
database. The most common bottleneck when developing a Web application is in the
reading of a large number of records from a database, or executing a particularly
complex SELECT statement against the database.

Writing to or updating a database usually is performed on a small number of records at
a time. This is often much less of an issue than cases that involve reading thousands of
records at a time. Consequently, in this section, I look at different ways to speed up
your database queries (also known as reads). Many of the same techniques can be
applied to database updates (also known as writes).

Finally, since I'm looking at ways to write more efficient SQL statements, the
techniques presented here are independent of the underlying database engine.
Obviously, you will obtain different performance improvements with different database
engines, as well as different database schema.

Streamlining SELECT statements

Review any embedded SELECT statements to identify any unused fields. That is,
identify fields that are retrieved from the database but whose values are never used in
the code following the query. This situation often results from code that has passed
through the hands of several developers, or that has undergone several iterations of
changes.

By eliminating unused fields from SELECT statements, you reduce the complexity of
the query and reduce the amount of data sent over the network (or at least between the
database server and the PHP script). The net affect of making such changes is a
reduced database read time.

Eliminating any unnecessary ORDER BY clauses

You can also reduce database read time by eliminating unnecessary ORDER BY
clauses in your SQL queries. For example, consider the following SELECT statement
designed to retrieve the product name and price when given a product number.

SELECT product_name, price
FROM catalog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 17 of 25

WHERE product_num = "123456789"
ORDER BY product_name

Assuming the product number is unique for all products in the catalog, this query only
returns a maximum of one record. Even though sorting 0 or 1 records should be very
quick, the ORDER BY clause is actually redundant. When this query is executed
hundreds or thousands of times for different products, this redundant overhead can add
up. Eliminate this type of redundancy.

Watching for complex SELECTs

The following shows the outline of a complex SELECT statement to be executed:

SELECT ... FROM ...
WHERE cond AND field IN
(
SELECT field1
FROM table2
WHERE cond
GROUP BY ...
HAVING ...
)

GROUP BY ...
ORDER BY ...

The exact fields, tables, and conditions are not important as they are usually
determined by the business. What is important to notice, however, is the use of the IN
clause with another internal SELECT statement. This can prove to be very expensive in
terms of query execution time. Depending on your specific data set, a much faster
approach may be to create a temporary table holding the results from the internal
SELECT, then use a greatly simplified SELECT statement within the IN clause. For
example:

SELECT ... FROM ...
WHERE cond AND field IN
(SELECT field1 FROM temp_table)

GROUP BY ...
ORDER BY ...

Now both SELECT statements execute many times faster than the previous single
SELECT statement.

In some tests that I ran on a client's data set, I even found that the percentage of
reduction in query execution time appeared to increase as the size of the data set was
increased. The largest data sets, with the longest execution times, realized the largest
percentage of time reduction.

Eliminating or reducing duplicate requests for the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 25 Writing efficient PHP

same data

When you process many records from a database, especially those cross-referenced
with another database, try to modify the code to eliminate -- or at least reduce --
duplicate requests for the same data.

For example, you generate a detailed sales report from a database that contains only
product numbers and actual sales. In the report you also need to display the
corresponding product names that are maintained in a different database. You may be
able to implement a basic caching mechanism so the product names are only retrieved
once for each product number.

This approach will consume more memory. But, depending on your specific data set, it
also can make a significant impact on the total amount of time spent reading data.

Considering indexes

With most database engines, you can execute queries manually at the equivalent of a
command-line. The database engine will show you which indexes, if any, it used when
executing the query. Try this with some of your longer running queries. You may be
surprised at the results.

In some cases, even though various indexes may exist on a table, the database engine
may not be able to use them for your particular type of query. Consider the pros and
cons of adding another index to this table.

As a general rule of thumb, try to create simple indexes (indexes on just one field in a
table). Simple indexes are often more useful to the query engine than more complex,
compound indexes. Additionally, the simple indexes typically require less maintenance
overhead for the database engine used.

Handling results sets

Assuming you've done all you can to optimize your database queries, the next thing to
look at is how you access the results within your PHP code.

For now, I assume that you are using the Unified ODBC functions in PHP since these
are the most generic. The same concepts apply even if you are using one of the other
database-specific sets of functions.

Rather than using something like odbc_result to retrieve individual fields, use
odbc_fetch_into to get the entire row into an array then access the array directly.
This results in far fewer functions calls especially when iterating over a large record set.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 19 of 25

Additionally, when accessing array elements, use numbered indexes rather than
named indexes. Although these generally are less readable, they result in faster
runtime execution. To address the readability issue, add short comments to indicate
which fields are accessed in each case.

Finally, avoid repeated calls (for example, when processing individual records or rows)
to the functions such as odbc_field_name, odbc_field_type, odbc_field_len
and other odbc_field_* functions. Such functions return the same value for all
records in a result set. The number of fields are always the same within a given query,
as are the field names, and the type and length of each field. Therefore, if any of these
values are required, retrieve them once after making the initial query/ Then, save the
result in a local variable that can be referenced as needed for each record.

Section summary

Now, you have looked at a variety of ways to improve the performance of database
queries in your PHP applications. Since the usual performance bottleneck is the
reading of large quantities of data, the focus of this section was on database reads or
SELECTs. However, you can apply many of the same concepts to alleviate any
performance bottlenecks associated with database updates.

In addition to reviewing the SQL statements used to extract data, you should also be
conscious of performance issues that may have been introduced by how you retrieved
the result sets.

In Other performance enhancements on page 21 , I go on to look at more drastic ways to
improve the performance of your Web application.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 25 Writing efficient PHP

Section 5. Other performance enhancements

The business need for speed

The suggestions described in this section are more general than coding improvements
and generally have a larger business impact. Each should be considered with respect
to your specific business conditions. There may be very good business reasons why
you are not able to take advantage of some or all of these. For example, upgrading
your servers may be a simple task if you only have one or two servers and they are
easily accessible. However, if your application is installed on hundreds or thousands of
your customers' servers, performing a hardware upgrade may be impractical or
infeasible.

Still, it is worthwhile revisiting these options periodically, possibly when starting a major
new release of the application.

Running PHP as a module

If you currently run PHP as a CGI executable (the default), and you use a Web server
for which a PHP module available is available (such as Apache), consider reconfiguring
the server to run PHP as a module. This avoids the overhead associated with starting
and terminating a CGI process for each client request. This modification has the
greatest impact when serving a large number of requests that involve short scripts, as
opposed to relatively few requests that involve much longer scripts.

To find out if there is a PHP module available for your particular Web server, or for
more details on configuring your Web server to use a PHP module, refer to the
installation section of the PHP manual.

Using the APCs of PHP

According to the Alternative PHP Cache (APC) Web site:

"APC was conceived of to provide a way of boosting the performance of PHP on
heavily loaded sites by providing a way for scripts to be cached in a compiled state, so
that the overhead of parsing and compiling can be almost completely eliminated."

Consider the use of the Alternative PHP Cache (APC) to help improve the performance
of your Web application. It is open-source and free, and could loosely be described as
an open-source competitor to the Zend Optimizer (discussed in Considering the use of
the Zend Optimizer on page 22).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 21 of 25

http://www.php.net/manual/en/installation.php
http://www.php.net/manual/en/installation.php
http://apc.communityconnect.com/
http://apc.communityconnect.com/
http://apc.communityconnect.com/
http://apc.communityconnect.com/
http://apc.communityconnect.com/
http://apc.communityconnect.com/

Considering the use of the Zend Optimizer

Zend, the primary developers of PHP, offers another pair of products that together can
help improve performance:

• Zend Encoder, a product that encodes your PHP scripts to protect your PHP scripts
against reverse engineering.

• Zend Optimizer, a product that works with the files generated by the Zend Encoder
and applies multi-pass optimizations to help speed up the execution of your PHP
code.

If your application is not currently running under a platform supported by the Zend
Encoder and Zend Optimizer, consider moving to a platform supported by these
products. While the Zend Optimizer is free, the Zend Encoder is not. You will also need
to weigh the cost of this product against the benefits achieved when using it in
conjunction with the Zend Optimizer.

Rewriting core functionality in C/C++

A more extreme approach to improving performance would be to rewrite some of the
larger and most frequently-used functions and methods in a compiled language such
as C or C++. If you can generalize this functionality and feel it would be beneficial to
others, submit it for inclusion in the core PHP language or as an extension. This
actually is how some of the built-in PHP functions came about.

Reviewing dynamic generation of PDF files

If your application dynamically produces PDF files using ClibPDF, PDFLib or similar,
consider the following:

• Is a proportional or fixed font appropriate for the information?
When you use a proportional font, correct alignment of numbers requires calls to
functions such as pdf_stringwidth to get the width of a number to compute the
coordinates of the left-hand side of the number. Such calls often are made many
times throughout the generation of a PDF file, and can add up. An alternative
approach, though possibly less acceptable to users, would be to use a fixed font
such as Courier. You can more easily keep track of the text positions within your own
code.

• Is it absolutely necessary to output reports in PDF or is an HTML format sufficient?
HTML can be generated much more quickly. Perhaps users would be happy with an
HTML format report for on-line viewing and then, only if a printable or print-friendly
report is required, generate a PDF file.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 25 Writing efficient PHP

http://www.zend.com/store/products/zend-encoder.php
http://www.zend.com/store/products/zend-encoder.php
http://www.zend.com/store/products/zend-optimizer.php
http://www.zend.com/store/products/zend-optimizer.php

• Just how timely and dynamic do the these reports need to be?
Reconsider the business case for having these reports. You might be able to batch
generate some commonly-requested reports, perhaps nightly, and make them
directly available through a hyperlink.

Other performance enhancements

More major suggestions for improving performance are given on the Zend Web site in
the article, "Optimizing PHP Scripts" Resources on page 24). While this is a good article,
its bias is that "programming time is expensive". This may be true, but as discussed
earlier in Background and motivation on page 2 , there are cases when programming
time is still the most viable option or the only option available. It also may be the only
option open to you, the developer.

To summarize some of the main points from the Zend article, other options to consider
when trying to improve performance include:

• Upgrade the hardware on which your PHP server is running.

• Upgrade the Operating System (OS). Zend suggests using a UNIX-based system
such as Linux or BSD UNIX.

• Reconsider the choice of database. For example, if your application does not need
stored procedures and sub-queries, then consider MySQL for improved
performance.

• Consider the use of the Zend Optimizer (free) and Zend Cache. While these
products support most of the major platforms, they currently are not available for all
platforms on which PHP is supported.

Section summary

In this section, you looked at improving the performance of your PHP applications by
re-designing parts of your application as well as the hardware on which it runs. In many
commercial applications, these often require approval from the business owners due to
additional expense for hardware and software, as well as additional time to complete
the application. As a result, many of these options are not readily viable in a business
environment.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 23 of 25

Section 6. Summary

Wrapup

In this tutorial, you reviewed the following ways to improve the performance of your
PHP applications:

• General guidelines for writing efficient code (largely language independent)

• PHP language-specific efficient programming tips

• Writing efficient SQL queries

• Other means of improving performance

If you followed through the entire tutorial, you should have gained some insights about
improving the performance of your PHP applications. If you'd like to more reading on
any of these techniques, refer to Resources on page 24 .

Resources

Unfortunately, relatively little information is available about writing efficient PHP
applications -- hence the motivation for writing this tutorial. The following are some
resources that I used in writing this tutorial.

• Visit the PHP Web site (http://www.php.net).

• If you have problems with a particular function, read the user-contributed notes and
comments throughout the PHP manual (http://www.php.net/manual/en/). Chances
are good that someone else has experienced the same problem and added notes
about it to the manual.

• The article, Optimizing PHP Scripts suggests "programming time is expensive."
Read how to improve the performance of your PHP applications from other angles. It
also contains a couple of useful sections on when to optimize, and how to measure
performance of pieces of your application.

• Check out Zend, the commercial side of PHP. It provides additional products that
can help improve performance: Zend Cache and Zend Optimizer.

• See "Using Strings" on the Zend Web site for more information on the different uses
of strings in PHP.

• Get further information on Internet Explorer's handling of MIME-types from Microsoft
Support WebCast: MIME-Type Handling in Microsoft Internet Explorer , January 11,
2001. In particular, refer to the Questions & Answers section at the end of the Web
cast where several questions address the possible need for two GET requests.

• Learn how to make your wireless content more dynamic with the use of PHP in the
IBM developerWorks tutorial, Flex your PHP (developerWorks, March 2002).

• Visit Steven Gould's Web site and get the useful PHP Quick Reference Card.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 25 Writing efficient PHP

http://www.php.net/
http://www.php.net/manual/en/
http://www.php.net/manual/en/
http://www.zend.com/zend/trick/trick-optimizing-php.php
http://www.zend.com/zend/trick/trick-optimizing-php.php
http://www.zend.com/zend/trick/trick-optimizing-php.php
http://www.zend.com/
http://www.zend.com/store/products/zend-encoder.php
http://www.zend.com/store/products/zend-encoder.php
http://www.zend.com/store/products/zend-optimizer.php
http://www.zend.com/store/products/zend-optimizer.php
http://www.zend.com/zend/tut/using-strings.php
http://www.zend.com/zend/tut/using-strings.php
http://www.zend.com/zend/tut/using-strings.php
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://support.microsoft.com/servicedesks/webcasts/wc011101/WCT011101.asp
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/46AF738CB7549D2986256B7B005CC40F?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/46AF738CB7549D2986256B7B005CC40F?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/46AF738CB7549D2986256B7B005CC40F?OpenDocument
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/
http://www.stevengould.org/

Your feedback

We welcome your feedback on this tutorial, and look forward to hearing from you. We'd
also like to hear about other tutorial topics you'd like to see covered.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Writing efficient PHP Page 25 of 25

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	Background and motivation
	Tools
	Getting help
	About the author
	Acknowledgements

	Writing efficient code
	Coding for efficiency
	Optimizing loops
	Optimizing loops: eliminate redundant function calls
	Optimizing loops: eliminate redundant function calls
(continued)
	Optimizing loops: inline function calls
	Optimizing loops: create or destroy objects
	Eliminating empty functions
	Eliminating redundant code
	Avoiding comments that fail to add value
	Reordering switch...case statements
	Handling special cases early
	Using multi-dimension arrays with caution
	Watching your network traffic
	Returning content when it's available
	Section summary

	Tweaking PHP code
	The finer points of efficient PHP coding
	Using pre-increment versus post-increment
	Quoting strings
	Understanding the difference between print and printf
	Understanding the difference between require and include
	Keeping source include files small
	Making effective use of built-in functions
	Reducing looping with built-in functions
	Use HTTP 1.0 with fsockopen
	Avoid the "Top 21 PHP Programming Mistakes"

	Section summary

	Optimizing database queries
	The importance of efficient SQL
	Streamlining SELECT statements
	Eliminating any unnecessary ORDER BY clauses
	Watching for complex SELECTs
	Eliminating or reducing duplicate requests for the same data
	Considering indexes
	Handling results sets
	Section summary

	Other performance enhancements
	The business need for speed
	Running PHP as a module
	Using the APCs of PHP
	Considering the use of the Zend Optimizer
	Rewriting core functionality in C/C++
	Reviewing dynamic generation of PDF files
	Other performance enhancements
	Section summary

	Summary
	Wrapup
	Resources
	Your feedback

